C-Library
File 10 Routines

Introduction
PVK_AllocEnv()
PVK_DeAllocEnv()
PVSetEnvMode()
PVGetEnvMode()
PVK_OpenExt()
PVK close()

PVK read()

PVK seek()
PVK_write()

PVK _insert()
PVK update()
PVK_remove()
PVK_getpos()
PVK setpos()
PVK _geterrno()
PVK strerr()
PVK _dict()
PVK_deffh()

PVK register()
PVK_RegisterKey()
Example

PxPlus is a trademark of PVX Plus Technologies Ltd.

All other products referred to in this document are trademarks or registered trademarks of their
respective trademark holders.

©2018 PVX Plus Technologies Ltd. — Printed in Canada
25 Centurian Drive, Suite 204, Markham, Ontario, Canada, L3R 5N8

All rights reserved. Reproduction in whole or in part without permission is prohibited.

The capabilities, system requirements and/or compatibility with third-party products described herein
are subject to change without notice. Refer to the PVX Plus website www.pvxplus.com for

current information.

Publication Release: V6.10

File 10 Routines

The PxPlus C-Library is an add-on interface that enables PxPlus Keyed, Indexed, and EFF files to
be accessed by programs written in 'C' and other programming languages. It consists of the
following file IO functions:

PVK_AllocEnv() Allocate Environment
PVK_DeAllocEnv() De-allocate Environment
PVSetEnvMode() Set Environment Variables
PVGetEnvMode() Get Environment Variables
PVK_open() File Open (Obsolete)
PVK_openEx() Extended File Open (Obsolete)
PVK_OpenExt() Extented File Open
PVK_close() File Close

PVK read() Read a Record from a File

PVK seek() Position within Keyed/Indexed File
PVK_write() Write/Rewrite a Record
PVK_insert() Write a New Record
PVK_update() Update an Existing Record
PVK_remove() Remove a Record
PVK_getpos() Get Address/Position within File
PVK_setpos() Set Address/Position of File
PVK_geterrno() Return Last Error Status

PVK strerr() Return Last Error Message
PVK_dict() Read Dictionary

PVK_deffh() Pointer to Internal Structure Block
PVK register() File Open (Obsolete)
PVK_RegisterKey() Register Usage of Library

In addition to the above functions, two 'C' header files are provided:

PVKIO.H - contains file structures and function prototypes
SYBEX.H - contains computer word size definitions and macros.

PxPlus V6

C-Library File 10 Routines

Environments Provided

Registration

These functions have been pre-compiled for the 32-bit and 64-bit Windows
environment.

Use and distribution of this package is prohibited without first obtaining an
authorized registration key. A warning message to this effect is presented whenever
a file is opened unless the application first invokes the PVK_RegisterKey() function
with a valid registration string and registration number.

Distribution of the PXPIO routines is restricted to only those companies that apply
for and receive a registration string and number directly from PVX Plus Technologies
Ltd.

PxPlus V6

C-Library File 10 Routines

PVK _AllocEnv() Allocate Environment

Format

Description

AN\

HPVKENV PVK_AllocEnv();
Where:

HPVKENV Handle to the environment structure, 4-byte value (32-bit version
of the library) or 8-byte value (64-bit version of the library).
Returns null on failure.

PVK_AllocEnv() is used to allocate the environment. The environment handle must
be passed to the following functions in order to provide thread-safety of PXPIO
operations; PVK_RegisterKey(), PVK_OpenExt(), PVSetEnvMode(),
PVGetEnvMode(). The environment handle must be freed at the end of the session
to avoid resource leaks.

Warning: Attempting to pass a bad or invalid environment handle to any PXPIO
function can cause unpredicable results that may lead to abnormal termination.

PVK_DeAllocEnv() Free Environment
Format void PVK_DeAllocEnv(HPVKENV hEnv);

Where:

hEnv Handle to environment structure.
Descri ption PVK_DeAllocEnv() is used to de-allocate the environment.
PVSetEnvMode() Set Environment Variables
Format intptr_t APIDEF PVSetEnvMode(HPVKENV hEny, int iFlag, intptr_t iValue);

Where:

hEnv Handle to environment structure.

PxPlus V6

C-Library File 10 Routines

iFlag Selector of the environment variable to be modified. Can be one of the
following constants:

PV_BURST MODE 1
PV_DIRTY READ 2
PV_LOCK_ MODE 3
PV_READ ONLY 4
PV _MAX MB 5
ivalue Corresponding value for iFlag:
PVK_BURST ON 1
PVK_BURST OFF 0
PVK_DIRTY ON 1
PVK_DIRTY OFF 0

PVK_DONT CHECK LOCK 1 (Don't check, never lock read records)

PVK CHECK LOCK 2 (Check for extracted records)

PVK CHECK LOCK NOWAIT 4 (Check for extracted records, exit if locked)
PVK_HDR LOCK NOWAIT 8 (Don’twait for a locked header)

PVK_READONLY ON 1
PVK_READONLY OFF 0

PV _MAX MB (Maximumsize of file segment in MB, integer value 0 to 2000)

Descri ption PVK_SetEnvMode() is used to set the value of environment variables. If successful,
the function returns the previous value of the modified environment variable. If
specified and iValue is not valid, ERR BAD TYPE (-5) is returned. Returns
PV_ERROR (-1) on failure.

Additional pv_BUrsT MODE:

Notes * Normal processing of a file involves locking each area of the file as it is read.
Activating burst mode greatly reduces the number of locks issued against a file.
With Burst mode set, the PXPIO routines lock the file header for either 50 file
operations or three-tenths of a second, whichever occurs first. This decreases the
number of times the file must be locked, and the number of times that internal
buffers may need to be reloaded.

PV_DIRTY READ:

¢ Dirty Read mode of operation skips the normal file consistency checks. Dirty reads
can speed file processing by reducing the number of locks issued against a file.
However this may result in inconsistent data should the file be updated while
being read by the PXPIO routines.

PV_LOCK MODE:

PxPlus V6 6

C-Library File 10 Routines

* The Lock Mode is used to control whether to check for locked / extracted records
when reading and writing. The default setting is to not check for locked records
for backwards compatibility with older versions of the PXPIO routines.

* Note: This flag should normally be set to PVK_CHECK_LOCK when files are
being updated concurrently by PxPlus and applications using the PXPIO routines.
A setting of PVK_DONT_CHECK_LOCK will allow the PXPIO routines to read
and write a record that is extracted in PxPlus. The remaining settings provide a
quicker means of checking for a locked record or file header and will return
immediately rather than retrying the lock.

PV_MAX MB:

* The PV_MAX_MB setting is used to control the approximate size of a file in mega
bytes before additional segments are created. This setting is functionally equivalent
to the MB' (Mega-Bytes) system parameter in PxPlus. Values for PV_MAX_MB
must be in the range of zero (0) to two thousand (2000). The default is two
thousand (2000). Specifying a value of zero (0) resets this parameter to its default.

PVGetEnvMode() Get Environment Variables

Format intptr_t APIDEF PVGetEnvMode(HPVKENYV hEny, int iFlag);
Where:
hEnv Handle to environment structure.
iFlag Selector of the environment variable to retrieve the value.

Descri ption PVK_GetEnvMode() is used to get the value of the environment variable. If
successful, the function returns the value of the environment variable specified by
iFlag. Returns Pv_ERROR (-1) on failure.

PVK open() File Open (Obsolete)

Description Obsolete. Supported for backwards compatibility only. Refer to the PVK_OpenExt()
function.

PxPlus V6 7

C-Library File 10 Routines

PVK _openEXx() Extended File Open (Obsolete)

Description Obsolete. Supported for backwards compatibility only. Refer to the PVK_OpenExt()
function.

PVK_OpenExt() Extended File Open

Format int PVK_OpenExt(HPVKENYV hEnvy, char *path, char *pswd, int pswd_sz, INT16 opt,
INT32 *open_err);

Where:
hEnv Handle to environment structure created by PVK_AllocEnv().

path Pointer to a null terminated string containing the pathname of the
keyed/direct/indexed/view file to open.

pswd Pointer to a buffer that contains the optional password required to
access a keyed or direct file.

pswd_sz Indicates the length of the pswd buffer.

opt Indicates whether a file should be opened in read-only mode
(Windows or UNIX) or for exclusive use (Windows Only).

open_err Error code (see error code values below).

Descri ption PVK_OpenEXxt() is used to open a PxPlus keyed/direct/indexed/EFF files or Views
which requires a password or extended options. It will return the logical file handle
for the file provided it can be opened. All subsequent file I/O calls to PXPIO
functions must specify the returned handle.

Valid opt values include WSF_INPUT for read-only and WSF_LOCK for exclusive
mode. A value of -1 is returned if the file cannot be opened.

Opt Table

#define FAM READONLY 0x0000 /* File in read only mode */
#define FAM READWRITE 0x0001 /* File in read write mode */
#define WSF LOCK 0x0400 /* File was opened with exclusive use */

PXPIO Error Codes

#define ERR OK

#define ERR CANT OPEN
#define ERR BAD FH
#define ERR NOSUCH_KEY
#define ERR EOF
#define ERR BAD TYPE

/* no error */

g w N O

PxPlus V6 8

C-Library File 10 Routines

#define ERR KEYNO 6

#define ERR KEY LENGTH 7

#define ERR NO MEMORY 8

#define ERR KIO OFS 9

#define ERR KIO FAILED 10
#define ERR KIO WRONG 11
#define ERR KSZ WRONG 12
#define ERR RSZ WRONG 13
#define ERR SEEK FAILED 14
#define ERR READ FAILED 15
#define ERR READ SHORT 16
#define ERR BAD FUNCTION 17
#define ERR INDEXED FILE 18
#define ERR WRITE FAILED 19
#define ERR KIO BADADR 20
#define ERR KIO DELCHN 21
#define ERR KIO NOEOF 22
#define ERR BUSY 23
#define ERR FILE FULL 24
#define ERR NOT REGISTERED 25
#define ERR DOM 26
#define ERR KIO RSIZE 27
#define ERR KIO BADSEG 28
#define ERR IND HEADER 29
#define ERR KIO DECOMPFAIL 30
#define ERR PSWD WRONG 31
#define ERR BAD OFFSET 32
#define ERR NO SUCH FILE 33
#define ERR RESTRICT FAILED 34
#define ERR ACCESS VLIN 35
#define ERR TX BEGIN 36
#define ERR TX ROLLBACK 37
#define ERR FILE BUSY 38
#define ERR MISSING INFO 39
#define ERR OBJ VER WRONG 40
#define ERR BAD BUFFER 41
#define ERR SYS NOFH 42
available (too many open files)
#define ERR NET FAILED 43
#define ERR VERSION 44
#define ERR SECURITY FAILED 45

#define

ERR PVK NOTSUPPORTED 46

/* File or Data busy */

/* Duplicate key not allowed — if
missing Rpt ERR NO SUCH KEY */

/* Keyed file error (Record length
invalid) */

/* Invalid segment number */

/* Unable to access Indexed file
header */

/* Decompress of record failed */

/* Wrong password supplied */

/* Bad Read Offset */

/* File does not exist (or already
exists) */

/* Access violation, attempt to write
to ReadOnly file */

/* Begin transaction without finishing
previous */

/* Rollback/Commit without proper
Begin transaction */

/* File is busy */

/* Not enough information passed in */

/* Incorrect buffer returned from
page _get */

/* os error: No more file handles

/* network error */

/* Logon failed */
/* Feature is not supported */

PxPlus V6

C-Library File 10 Routines

PVK close() File Close

Format

Description

int PVK_close(int fh);
Where:

fh File handle returned from a prior call to PVK_OpenExt().

PVK_close() closes the file and releases all resources (memory) associated with the
specified file handle.

PVK read() Read a Record from a File

Format

Description

int PVK_read(int th, char *dtabfr, int dtasz, int function);

Where:
fh File handle returned from a prior call to PVK_OpenExt().
dtabfr Pointer to the data buffer to receive the record data.
dtasz Size (in bytes) of the data buffer.
function Type of read to be performed - values are:
PVKRD CUR Returns current
PVKRD NEXT Returns next
PVKRD PRIOR Returns prior
PVKRD LOCK OR'ed into function to lock the record
PVKRD UNLOCK OR'ed into function to unlock all records

PVK_read() is used to read a record from a PxPlus Keyed, Indexed, or EFF file. The
return value will contain the length of the record in bytes or -1 if an error occurred. A
return value of -2 indicates that the supplied buffer was not large enough to store the
entire data record.

A record may be locked or extracted by specifying PVKRD_LOCK in conjunction with
the appropriate function (e.g., PVKRD_NEXT | PVKRD_LOCK).

Note: For files with an external key (Direct files) the data returned will consist of the
external key followed by the data.

For example, a Direct file with a 6 character key and an 80 character record size will
return an 86 byte record - characters 1-6 will be the external key padded with nulls
followed by the record data.

PxPlus V6

10

C-Library File 10 Routines

PVK seek()

Format

Description

int PVK_seek(int fh, char *keybfr, int keysz, int keyno);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

keybfr Pointer to a buffer containing the key.

keysz Size of the key in bytes.

keyno Key number to use (0=Current key, 1=Primary, 2=first alternate, etc.).

PVK_seek() is used to position the key pointer to a specified location within a file
for subsequent processing. By default the Key IO routines read using the primary
access key (KEY 1). An alternate key chain may be specified in the keyno parameter.

If keyno is set to 0, the current key is used.

If successful, a status of 0 is returned

Position within a File

PVK write()

Format

Description

int PVK_write(int fh, char *dtabfr, int dtasz, char *keybfr, int keysz);
Where:

fh File handle returned from a prior call to PVK_OpenExt().
dtabfr Pointer to the data buffer to receive the record data.

dtasz Size of the record in bytes.

keybfr Pointer to a buffer containing the external key, if applicable.
keysz Size of the external key in bytes.

PVK_write() is used to write or rewrite a record to a PxPlus keyed, indexed,
or EFF file.

The PVK_insert and PVK_update functions may be used if an application needs to
differentiate between creating new records versus updating existing records.

The data buffer must contain a properly formatted record with the length of the
record specified. The value supplied in dtasz should contain the actual size of the
record rather than the size of the data buffer. PVK_write will pad the data record
with nulls as required for files with fixed length records.

The key buffer and length must contain the necessary key information for a file
with an external key. If no external key is defined for the file then the keysz field
must be set to zero.

The calling application is responsible for constructing a valid PxPlus data record
using field separators as required.

If successful this function will return 0 otherwise it will return -1.

Write/Rewrite a Record

PxPlus V6

11

C-Library File 10 Routines

PVK insert() Write a New Record

Format

Description

int PVK_insert(int fh, char *dtabfr, int dtasz, char *keybfr, int keysz);
Where:

fh File handle returned from a prior call to PVK_OpenExt().
dtabfr Pointer to the data buffer to receive the record data.

dtasz Size of the record in bytes.

keybfr Pointer to a buffer containing the external key, if applicable.
keysz Size of the external key in bytes.

PVK_insert() is used to write a new record into a PxPlus keyed, indexed, or EFF
file. It returns an error if a record with the same key value exists.

The data buffer must contain a properly formatted record with the length of the
record specified. The value supplied in dtasz should contain the actual size of the
record rather than the size of the data buffer. PVK_insert() will pad the data record
with nulls as required for files with fixed length records.

The key buffer and length must contain the necessary key information for a file with
an external key. If no external key is defined for the file then the keysz field must be
set to zero.

The calling application is responsible for constructing a valid PxPlus data record
using field separators as required.

If successful this function will return 0 otherwise it will return -1.

PVK update() Update an Existing Record

Format

int PVK_update(int th, char *dtabfr, int dtasz, char *keybfr, int keysz);
Where:

fh File handle returned from a prior call to PVK_OpenExt().
dtabfr Pointer to the data buffer to receive the record data.

dtasz Size of the record in bytes.

keybfr Pointer to a buffer containing the external key, if applicable.
keysz Size of the external key in bytes.

PxPlus V6

12

C-Library File 10 Routines

Description

PVK_update() is used to update an existing record in a PxPlus keyed, indexed, or
EFF file. The PVK_update() function will return an error if the record does not
already exist.

The data buffer must contain a properly formatted record with the length of the
record specified. The value supplied in dtasz should contain the actual size of the
record rather than the size of the data buffer. PVK_update will pad the data record
with nulls as required for files with fixed length records.

The key buffer and length must contain the necessary key information for a file with
an external key. If no external key is defined for the file then the keysz field must be
set to zero.

The calling application is responsible for constructing a valid PxPlus data record
using field separators as required.

If successful this function will return 0 otherwise it will return -1.

PVK_remove() Remove a Record

Format

Description

int PVK_remove(int fh, char *keybfr, int keysz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

keybfr Pointer to a buffer containing the external key of the record to remove.

keysz Size of the primary key in bytes.

PVK_remove() is used to remove a record from a PxPlus keyed file. The length
and value of the primary key for the record must be specified.

Records can only be removed from a file using the primary key. Alternate keys
cannot be used.

This function cannot be used with indexed files.

If successful this function will return 0 otherwise it will return -1.

PVK getpos() Get Address/Position within File

Format

long PVK_getpos(int fh);
Where:
fh File handle returned from a prior call to PVK_OpenExt().

PxPlus V6

13

C-Library File 10 Routines

Description PVK_getpos() returns the address of the record associated with the current key
pointer for the specified file handle.

A return value of -1 is returned if the function is unsuccessful.

PVK setpos() Set Address/Position of File

Format int PVK_setpos(int th, long addr);
Where:
fh File handle returned from a prior call to PVK_OpenExt().
addr Address/position of the record.

Descri ption PVK_setpos() sets the current record address based on the specified address.

If successful, a status of 0 is returned.

PVK get max_mb() Deprecated

Description Deprecated. This has been replaced by the PVGetEnvMode() function with an iFlag
setting of PV MAX MB.

PVK set_max_mb() Deprecated

Description Deprecated. This has been replaced by the PVSetEnvMode() function with an iFlag
setting of PV MAX MB.

PVK_ CheckLock() Deprecated

Description Deprecated. This has been replaced by the PVGetEnvMode() and PVSetEnvMode(
) functions with an iFlag setting of PV_LOCK_MODE.

PxPlus V6 14

C-Library File 10 Routines

PVK dirty()

Description Deprecated. This has been replaced by the PVGetEnvMode() and PVSetEnvMode(
) functions with an iFlag setting of Pv_ DIRTY READ.

Deprecated

PVK burst()

Description Deprecated. This has been replaced by the PVGetEnvMode() and PVSetEnvMode(
) functions with an iFlag setting of Pv_ BURST MODE.

Deprecated

PVK geterrno()

Format int PVK_|

Description This function returns the last known error status. It will return one of the following

geterrno(void);

values (see PVKIO. H):

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

ERR CANT OPEN
ERR BAD FH

ERR NOSUCH KEY
ERR EOF

ERR BAD TYPE

ERR KEYNO

ERR KEY LENGTH
ERR NO MEMORY
ERR KIO OFS

ERR KIO FAILED
ERR KIO WRONG
ERR KSZ WRONG
ERR RSZ WRONG
ERR SEEK FATLED
ERR READ FATLED
ERR READ SHORT
ERR BAD FUNCTION
ERR_INDEXED FILE
ERR WRITE FAILED
ERR KIO BADADR
ERR KIO DELCHN
ERR KIO NOEOF
ERR BUSY

ERR FILE FULL

O J o U WwWwN

Nej

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

ERR NOT REGISTERED 25

Return Last Error Status

PxPlus V6

15

C-Library File 10 Routines

#define ERR DOM 26
#define ERR KIO RSIZE 27
#define ERR KIO BADSEG 28
#define ERR IND HEADER 29
#define ERR KIO DECOMPFAIL 30
#define ERR PSWD WRONG 31
#define ERR BAD OFFSET 32

#define ERR NO SUCH FILE 33
#define ERR RESTRICT FAILED34
#define ERR ACCESS VLIN 35

#define ERR TX BEGIN 36
#define ERR TX ROLLBACK 37
#define ERR FILE BUSY 38

#define ERR MISSING INFO 39
#define ERR OBJ VER WRONG 40

PVK strerr() Return Last Error Message

Format

Description

char * PVK _strerr(void);

This function returns the text of the current error status. Values are:

"Can't open data file"

"Bad file handle number"

"Invalid key specified"

"End of file reached"

"Bad file type —-- Not a KEYED file"

"Key number invalid"

"Length invalid"

"No system memory available"

"File error : Offset error"

"File error : Read of key buffer failed"
"File error : Key header address invalid"
"File error : Key size invalid"

"File error : Record size invalid"

"File error : Seek failed"

"File error : Read failed"

"File error : Truncated read"

"Bad 1nternal function code"

"File type 1s indexed"

"Write command failed"

"Keyed Io returned bad address"

"Deleted record chain corrupted"

"No EOF marker found in keyed file"
"File header or record busy -- retry later"

PxPlus V6

16

C-Library File 10 Routines

"File full"™ "Registration

Failure" "Duplicate key not

allowed"

"File error : Record length invalid"

"File error : Invalid Segment number"
"Unable to access Indexed file header"

"File error : Decompression failed"

"File error : Password Incorrect"

"Bad record offset"

"File does not exist"

"Unknown operator in restrict routine"
"Access Violation: File is in Read Only mode"
"Begin transaction without ending previous transaction"
"Rollback/Commit without Begin transaction"
"File header is busy -- retry later"
"Required information missing"

"Views object version wrong"

PVK dict() Read Dictionary

Format

Description

int PVK _dict(int fh, int dctidx, char *dctbfr, int dctbsz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().
dctidx Data dictionary entry.

dctbfr Pointer to the data buffer to receive the data dictionary record.
dctbsz Size of the data buffer in bytes.

This function can be used to read the embedded data dictionary records held within
a file. The format of the information contained within the data dictionary is subject
to change and as such, is not documented in this reference manual.

PVK deffh() Pointer to Internal Structure Block

Format struct PVKINF * PVK_deffh (int fh);
Where:
fh File handle returned from a prior call to PVK_OpenExt().
PxPlus V6 17

C-Library File 10 Routines

Description

’

This function may be used to obtain a pointer to the internal structures maintained
by PXPIO.

Note: The values contained within this structure should not be modified by an outside

application. Any attempt to do so, may result in file corruption and/or cause the
application to become unstable.

See PVKIO.H for more details on this structure.

If successful, this function will return valid pointer otherwise it will return null.

Warning: Passing a bad or invalid file handle can cause unpredicable results that may

lead to abnormal termination.

PVK register()

Description

Deprecated. This has been replaced by the PVK_RegisterKey() function.

Deprecated

PVK RegisterKey()

Format

Description

int PVK_RegisterKey(HPVKENV hEny, char *reg_str, long reg_num);

Where:

hEnv Handle to environment structure created by PVK_AllocEnv().
reg_str Registration string provided by PVX Plus Technologies Ltd.
reg_num Registration number provided by PVX Plus Technologies Ltd.

PVK_RegisterKey() must be called prior to opening the first file in order to provide
the DLL with a valid registration string and key. Without this registration
information, a warning message that requires user intervention will be displayed
whenever a file is opened.

The PXPIO routines are not to be redistributed as part of any application without
first having purchased and obtained a proper registration string and number from
PVX Plus Technologies Ltd.

Register Usage of Library

PxPlus V6

18

C-Library File 10 Routines

Example

/*

sample.c : Sample PXPIO console application*/

#include <stdio.h>
#include <windows.h>

#include "pvkio.h"

int main(int argc, char* argvl[])

{

HMODULE hPvkio;

FARPROC PVK OpenExt, PVK close, PVK read, PVK write, PVK seek;
FARPROC PVK AllocEnv, PVK DeAllocEnv, PVK RegisterKey;
HPVKENV hEnv;

int fh, keysz, dtasz, i, sts, fc;

char bfr[256], keybfr[4+1], dtabfr[4+256+1], pswd[32];
INT16 opt = 0;

INT32 open_err = 0;

memset (pswd, 0x00, sizeof (pswd));

/* Load the DLL and locate necessary entrypoints */

if ((hPvkio = LoadLibrary("pxpio.dll")) EQ NULL) return -1;

if ((PVK OpenExt = GetProcAddress (hPvkio, "PVK_OpenExt")) EQ NULL) return -2;
if ((PVK _close = GetProcAddress (hPvkio, "PVK close")) EQ NULL) return -2;
if ((PVK_read = GetProcAddress (hPvkio, "PVK read")) EQ NULL) return -2;
if ((PVK _write = GetProcAddress (hPvkio, "PVK write")) EQ NULL) return -2;
if ((PVK_seek = GetProcAddress (hPvkio, "PVK seek")) EQ NULL) return -2;
if ((PVK AllocEnv = GetProcAddress (hPvkio, "PVK AllocEnv")) EQ NULL) return -2;
if ((PVK DeAllocEnv = GetProcAddress (hPvkio, "PVK DeAllocEnv"))EQ NULL) return -2;

if ((PVK_RegisterKey = GetProcAddress (hPvkio, "PVK RegisterKey"))EQ NULL) return -2;

/* Create a new Environment */
hEnv = (HPVKENV) (*PVK_AllocEnv) () ;
if (hEnv EQ NULL) return -3;

(*PVK_RegisterKey) (hEnv, "<Insert License Name and Number here>", 12345678L);

fh=(int) ((*PVK_OpenExt) (hEnv, "testfile", pswd, (int)sizeof (pswd), opt, &open_err));
if (fh EQ (int)-1) return -4;

/* Insert/Update 10 records */
for (i=1;i<=10;i++)
{
sprintf (keybfr, "%$04d", 1i);
sprintf (dtabfr, "This is record #%d%c", i, 0x8a);

keysz = strlen (keybfr);
dtasz = strlen (dtabfr);

sts = (int) ((*PVK write) (fh, &dtabfr, dtasz, &keybfr, keysz));

sprintf (bfr, "Writing: %$s - %s - sts=%d\n", keybfr, dtabfr, sts);
printf (bfr) ;

/* Seek to key 0005 and read until end of file */
sts = (int) ((*PVK_seek) (fh, "0005", 4, 1));
fc = PVKRD CUR;

for(; ;)
{
sts = (int) ((*PVK_read) (fh, &dtabfr, sizeof (dtabfr), fc));
if (sts EQ -1) break;/* EOF */
dtabfr([sts] = 0;
sprintf (bfr, "Read: %s - sts=%d\n", dtabfr, sts);
printf (bfr) ;
fc = PVKRD_NEXT;
}

(*PVK close) (fh);

(*PVK DeAllocEnv) (hEnv)
; FregLibrary(thkio);
return 0;

PxPlus V6

19

